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A near-wall turbulence model based on k, s, and ~ equations is described. It is used to 
predict flow and heat transfer in a two-dimensional channel and in boundary layers. Good 
agreement with data on skin friction, Stanton number, mean velocity, and turbulent 
intensities is obtained. Solutions to the model show the correct Reynolds number 
dependence without building it into any of the coefficients. Zero and adverse pressure 
gradient boundary layers are calculated; in both cases, the results agree well with 
experiment. 
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I n t r o d u c t i o n  

Heat and momentum transfer in turbulent boundary layers 
is controlled largely by a thin layer very near to the surface, 
within which turbulent mixing is suppressed by the 
proximity of the wall. The blocking effect of the solid 
boundary is manifested most clearly by the suppression of 
the normal component of turbulent intensity; precisely this 
component is responsible for transport to the boundary. It 
is shown in Durbin (1991), by using direct numerical 
simulation (DNS) data (Kim and Moin 1989), that near-wall 
"damping" of the eddy viscosity is caused by this 
suppression of the normal velocity; so if one uses the 
formula 

v, = C~v2T (1) 

where T is a time scale and v 2 is the variance of the normal 
component of turbulent velocity, then it is unnecessary to 
introduce ad hoc damping functions--as has been done in 
previous near-wall turbulence models. The essential require- 
ment is a model to predict the behavior of the quantities in 
Equation 1 near to the wall. The k-e-v model described 
herein was formulated for that purpose. This model should be 
viewed as a thin shear-layer approximation to a tensorally 
invariant Reynolds stress closure. It constitutes a necessary first 
step in the development of a model for more complex turbulent 
flows---the fact that the thin-layer model uses k, e, and v ~ as 
dependent variables should not confuse the main issue, which 
is exploration of the possibility of near-wall modeling by 
solving differential equations, rather than by ad hoc 
prescription of damping functions. In complex geometries the 
same approach to near-wall turbulence can be used in 
conjunction with a complete Reynolds-stress model (Durbin 
1993). 

The mathematical and physical basis of the present model is 
described in Durbin (1991). Essentially, kinematic blocking by 
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the wall is introduced by an elliptic-relaxation equation for 
the redistribution terms in the Reynolds stress equations. That 
equation enables satisfaction of the boundary conditions; it 
also represents, in a somewhat indirect way, the nonlocal aspect 
of kinematic blocking. In the present paper, the equations of 
the model will be presented without repetition of the lengthy 
mathematical and physical rationalization that can be found 
in Durbin (1991). This is very much a follow-up to the 
previous paper, in which we assess the potential of the 
present approach by predicting boundary-layer flows: such 
assessment is an essential prerequisite to applying the 
approach to more complex flows. 

Another unconventional feature of the present model is 
the "local anisotropy" term in the 8-equation, which was 
introduced in Durbin (1990). In calculations of turbulent 
channel flow, it was found that an enhanced production of 
e was needed near the wall in order to obtain satisfactory 
agreement between model and data. It was proposed that 
this might be associated with linear production terms in the 
exact e equation. These linear terms vanish if local isotropy 
(i.e., isotropy of the dissipation tensor) is satisfied. The 
apparent requirements of the modeling motivated a theoretical 
examination of the validity of the hypothesis of local isotropy 
(Durbin and Speziale 1991), with the conclusion that it was 
formally inconsistent with the Navier-Stokes equation when 
there was a significant mean rate of strain. This conclusion was 
cited in Durbin (1990) to justify an enhanced production of 
dissipation in the region of high mean shear, near to the 
surface--in practice, the modeling simply involves allowing C~, 
to be a function of the ratio of kinetic energy production to 
dissipation. 

Aside from these two innovations, the model is of a 
standard form. Its equations are the usual k--e system and 
a common form of v-equation, which is made into a 
fourth-order system of equations by coupling it to the 
previously cited elliptic .f~iuation for the redistribution term; 
this is referred to as the v -'~-/=22 system of equations. 

After briefly describing the model, we will show that the 
predictions of channel flow have not deteriorated (from 
Durbin 1991, 1990) by the present refinements to the model. 
Then we proceed to computations of momentum and heat 
transport in a fiat-plate boundary layer. In addition to 

316 Int. J. Heat and Fluid Flow, Vol. 14, No. 4, December 1993 



showing that the present model gives very good results for 
the zero pressure-gradient case, a computation is provided 
of the experiment by Samuel and Joubert (1974) on a 
boundary layer developing into an increasingly adverse 
pressure gradient. That experiment was undertaken specifically 
to provide data on a nonequilibrium boundary layer, against 
which turbulence models could be tested. It is shown in Rodi 
and Scheuerer (1976) that k-e models with damping functions 
are unable to predict this flow. The present calculations are 
rather encouraging: good results were obtained without any 
adjustments to the model. 

T h e  m o d e l  

The present model is similar to k-e models: differential 
equations are solved for some components of the Reynolds 
stress, but the turbulent transport in the mean momentum 
equation is represented by an eddy viscosity. We consider 
boundary-layer flows, so Equation 1 is the only component 
of the eddy viscosity tensor that is needed. The essential 
difference between the present and the k--t model is the use 
of an anisotropic eddy viscosity; indeed, the principal failure 
of the k ~  model near to boundaries, which ad hoe damping 
functions are required to correct, is that it is an isotropic 
model, while the near-wall turbulence is extremely anisotropic 
(Durbin 1990). Equation 1 is the 2-2-component of the 
anisotropic eddy-viscosity tensor (Launder 1989) 

% = C~u~ T 

The k-t model uses the isotropic 

% = C~ok T 

In the boundary-layer approximation, with the Reynolds 
shear stress replaced by an eddy viscosity, the steady mean 
momentum equation can be written 

U ~  U = - ~ e  + t~,((v + vt)~yU) (2) 
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Equation 2 is expressed in von-Mises independent variables 
(~P - x)--that is, the partial derivatives with respect to x are 
at constant ~P, and dy is understood to be d~/U. The details 
of boundary-layer computation in these variables are well 
known (Patankar and Spalding 1970): a virtue of this 
formulation is that V is eliminated from the convective 
derivative. A boundary- layer code with an expanding mesh 
was written to solve Equation 2 and the turbulence model. 
The mesh was expanded by requiring that the 15th grid 
point from the top of the domain coincide with the 99 
percent boundary-layer thickness. The eddy viscosity is 
given by Equation 1 in which 

T = max ( : ,  Cr(~)) (3) 

This is just the usual time scale k/e, with a lower bound by 
the Kolmogoroff scale. (The values of Cr and all other 
model constants are given in the nomenclature section.) 
Equation 3 introduces as viscous time scale near the surface. 
Equations that predict k, e, and v z are required to form a 
closed system. 

The k-e equations are standard (Rodi and Scbeuerer 1986): 

(rk/ / 

= I- 0, v + 0ye (4) 
T 

in which ~ is the rate of energy production vt(ay U) 2. The 
only unconventional feature of Equations 4 is that C~* is 
allowed to be a function of ~/e to represent production by 
"local anisotropy." The linearized form 

C*  = C,,(1 + ax~/e) (5) 

with at = 0.1 was found adequate in Durbin (1990) and 
here; more generally, a non-linear dependence would be 
required to accommodate large values of ~/e. Computations 

N o t a t i o n  

Model constants 

C~ = 0.23 
CT = 6.0 

k - e system: 

a 1 = 0.1 
C,~ = 1.44 
C,2 = 1.9 
ak = 0.9 
a, = 1.3 

m 
v2 - ~ 2 2  system: 

C 1 = 1.3 
Cz = 0.3 
CL = 0.2 
C~ = 90 

Roman symbols 

Cf Friction coefficient, 2¢,,/U~ 
Cf0 Friction coefficient based on reference velocity in 

Samuel and Joubert (1974) 

f 2 2  
k 
L 

f l22 

Pr 
R, 
Ro 
St 
T 
x, y 
U,U® 
U* 

/c22/k 
Kinetic energy 
Length scale 
Rate of turbulent kinetic energy production 
Velocity-pressure gradient correlation+term re- 
lated to dissipation tensor 
Prandtl number, v/g 
Reynolds-number-based friction velocity 
Reynolds number based on momentum thickness 
Stanton number, xOyO(O)/Uo~O(oo) 
Time scale 
Horizontal and vertical coordinates 
Mean velocity and free-stream velocity 
Friction velocity, 

Greek symbols 

~99 
e 

0 
O 
/¢ 

V 

ip 

Boundary-layer thickness of 99 percent 
Dissipation rate 
Boundary-layer momentum thickness 
Mean temperature 
Diffusivity of temperature 
Viscosity 
Kinematic wall shear 
Stream function of moan flow 
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with at = 0 produced inferior results, even after C,i was 
increased to compensate for its omission. Thus, our 
experience is that this term is a clear improvement to the 
model. The present model addresses the near-wall problem 
and was calibrated using wall-bounded flows; Equation 5 
may not give satisfactory spreading rates for free shear 
layers. 

The boundary conditions to Equation 4 are that 
k = ayk = 0 at no-slip boundaries. These two conditions on 
k suffice to determine the solution for the coupled system 
of equations (4); there is no need to impose conditions of e 
at the wall--indeed, it would be incorrect to do so. The 
no-slip boundary condition guarantees the correct limiting 
behavior k - +  e(O)y2/2v as y+ -+ O. 

It is well known that boundary-layer calculations suffer 
from the difficulty that the turbulent energy goes to zero at 
the top of the layer, rather than having the physically correct 
y-4  fall off in the free stream. Here we follow the common 
expedient of introducing a small level of "free-stream 
turbulence" to avoid this difficulty. A level of 1 percent 
free-stream turbulence (k = 10-4U 2) was used. However, the 
results were not sensitive to this, and were virtually identical 
with 0.1-percent free-stream turbulence: the essential properties 
of the model are determined by its near-wall behavior. The 
free-stream condition on e is dye = 0 at the top of the 
computational region. 

The most important ne__w aspect of the present model is 
its method of predicting /)2. /)2 is blocked by the boundary 
due to the no-normal-flux condition. Blocking is a kinematic 
effect; it is not associated directly with any term in the 
Reynolds stress dynamical equations. The boundary effect must 
be represented indirectly through the redistribution terms in 
the Reynolds stress balance (such as the pressure-strain). The 
boundary effect is associated with elliptic "action at a 
distance": that gives a rationale for introducing an elliptic 
relaxation_model for the redistribution term. Also, the limiting 
behavior /)2~ O(y4) as y+-- ,0  cannot be met by Reynolds 
stress transport models; the elliptic relaxation model enables 
this boundary condition to be satisfied. 

The v2-component of the Reynolds 
equation is 

u,~=#22-~+,~,  v+o~/ / 

stress transport 

(6a) 

Turbulent self-transport has been modeled by an eddy 
viscous term. #22 re_p_resents the unclosed redistribution 
term -2v-'~yp - e22 + ~)2el k. The action at a distance of the 
wall is represented by an elliptic relaxation equation 
(Durbin 1991) for this term: 

2 2  L 0yA2  - - A 2  = (1 -- C1) 
E 2 --/)2/k" ] 

C2 vt T ~ (t3y U) 2 (6b) 

in which 

#22 ---~ kf22 

This last equation enforces the correct behavior #22-* O(Y 2) 
as y+ ~ 0. In the quasi-homogeneous limit, the model (6) 
reduces to the model of Launder et al. (1975). The elliptic 
relaxation equation contains a length scale L that describes 
spatial decorrelation of turbulent eddies and a Laplacian to 
account for geometrical fall-off of correlations. The Laplacian 
can be considered a consequence of the Laplacian in the 
Poisson equation for pressure. In general the elliptic 
relaxation equation introduces kinematics into near-wall 
turbulence models; these kinematics might be associated 

with blocking or with pressure reflection (Launder et al. 
1975). 

The length scale in Equation 6b is prescribed as 

(k3/2 C (Y3"~l/4x~ 
L =  C L m a x ~ - ,  , \ ~ - ]  j (7) 

by analogy to Equation 3. 
At a no-slip boundary, the correct behavior of v 2 is 

v 2 = O(y*). The model is formulated such that this condition 
can be met: the general solution to Equation 6a as y ~ 0 is 

-- B + y4 
/)2 ..~ Ay2 + 8(0)f22(0) _ _  

y 20v 2 

where A and B are integration constants. The boundary 
condition amounts to requiring that A = B = 0. In practice 
the /)2_ #2a equations were solved as a coupled system 
using a block tridiagonal solver, with the limiting condition 
/)2_. e(0)f22(0)y4/20v2 imposed. The subroutine to solve this 
system was the same as that used to solve the coupled k-e 
system, with the limiting condition k ~ 8(0)y2/2v imposed. 
In the free stream ~y#22 = 0, and the isotropy condition 
/)2 = 2k/3 are prescribed. 

The feasibility of the present model was originally 
demonstrated by making use solely of DNS channel flow 
data (Durbin 1991). Model constants could be set fairly 
coarsely for that purpose. In the boundary layer, the need 
to predict the growth rate of the momentum thickness 
requires more refined values of the constants". An attempt 
has also been made to bring the constants into line with 
values used by other modelers: for example, previously the 
round numbers C~ = 1.5 and C~: = 2.0 were found adequate 
for the initial formulation of the model; they have 
now been set to the more conventional values C~, = 1.44 
and C~2 = 1.9. Various other refinements are reflected by 
the values in the nomenclature section. 

Heat transfer was computed by solving 

UOxO = Oy x +  OyO + Q (8) 

which is analogous to Equation 2--von-Mises variables 
are used again. Turbulent transport of heat is modeled by 
an eddy diffusivity equal to vr/Prt, where Pr t is the turbulent 
Prandtl number. The source term Q was zero in the 
boundary-layer computations. It is included in Equation 8 
for the channel flow computations described next. 

C h a n n e l  f l o w  

In fully developed channel flow, the x-derivatives in the 
momentum, temperature, and model equations are identic- 
ally zero. Hence, this case reduces to the solution of ordinary 
differential equations. Such computations are described at 
length in Durbin (1991). For the present study, the channel 
flow was recomputed to verify that the agreement with data 
was not deteriorated by the present refinements to the model 
constants. Figure 1 is a comparison between the present 
model and DNS channel flow data at R, = 395: Figure la 
is a linear plot and Figure lb (added upon the request of 
reviewers) is a log-linear plot to show the wall region in 
more detail. The agreement between model and data is 
satisfactory. A similar level of agreement was obtained 
between the model and DNS data at R, = 180; in the 
interest of brevity, that computation is not shown. Almost 
perfect agreement would be obtained if the values of ak = 1.3 
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Figure 1 Comparison of model ( - - )  to DNS(symbols)  data for 
channel f low at R~--395. O, U; ×, k; A ,  vZ. (a) Linear-linear, 
(b) log-linear 

and ¢, = 1.6 were used; these are the values found in Durbin 
(1991) when the model was calibrated solely using low 
Reynolds number DNS channel flow data. It is clear that 
no universal model constants exist; the calibration process 
involves compromise within a range of flows. 

Temperature profiles were found by solving Equation 8 
numerically. In Kim and Moin (1989), the source Q was a 
constant and the boundary conditions were O = 0 at the 
walls. These are the conditions imposed on the solutions in 
Figure 2. This figure shows mean temperature profiles for 
molecular Prandtl numbers of 2.0, 0.71, and 0.1 compared 
to DNS data: the agreement is quite good. For the solid 
curves, the turbulent Prandfl is 0.9, which is representative 
of the values found by Kim and Moin (1989) in the near-wall 
region when Pr = 2.0 or 0.71; when Pr = 0.1, higher values 
(around 1.4) were observed, but no allowance for the 
turbulent Prandtl number to depend on molecular Prandtl 
number has been made in the computations shown by solid 
lines. For this reason the good agreement between data and 
model at Pr = 0.1 may be fortuitous--it probably is a 
peculiarity of the fact that the Peclet number, Pr x R,, is 
very low. The dashed curves in Figure 2 were computed 
with Equation 9 and are shown for consistency with later 
boundary-layer computations. In this case, the turbulent 
Prandtl number is a function of turbulent Peclet number. 
The two Prandfl number prescriptions show similar levels 
of agreements with the data. 

B o u n d a r y - l a y e r  c o m p u t a t i o n s  

Channel flow calculations were described in the last section 
to show that the present revidons to the model constants 
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did not deteriorate previous results. The main purpose of 
this paper is to present new model computations for 
bonndary-layer flow and heat transfer, thereby assessing the 
potential of our proposed approach to modeling near-wall 
turbulence. The model equations were solved initially for 
the zero pressure gradient fiat-plate boundary layer. The 
computations were initialized by interpolating DNS data 
provided by Spalart (1988); the data at Ro = 670 were used. 
There was a rapid initial transient during which the profiles 
were adjusted by the model equations because these data 
are not an equilibrium solution to our closure model. After 
that transient, the solution evolved downstream more slowly 
and became largely insensitive to initial conditions. 

Figure 3 shows the skin-friction coefficient versus mo- 
mentum thickness Reynolds number, compared to various 
experimental data: the agreement is quite encouraging. The 
Weighardt and Tillman data (Coles and Hirst 1968) cover the 
widest range of R e, and have been reproduced by others in 
many subsequent experiments. There is a noticeable dis- 
crepancy between model and data at the lowest Re shown. 
However, at these Reynolds numbers, experimental boundary 
layers are sensitive to how they are tripped (Purtell et al. 1981), 
and in unforced flow they would be transitional. Quantitative 
discrepancies here are not surprising; qualitatively, the 
tendency of Cf to rise steeply at low Reynolds number is 
reproduced by the model. 

30 
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Figure 2 Mean temperature profiles compared to DNS data at 
various molecular Prandtl numbers and R~ = 180. O, Pr = 0.1 ; x ,  
Pr = 0.71 ; A ,  Pr = 2.0. - - ,  Prt = 0.9; - - -, Prt given by Equation 9 
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Figure 3 Friction coefficient versus momentum thickness Rey- 
nolds number in zero pre~ure-grlKlieflt boundary layer. Experi- 
mental data: x ,  Weigberdt and Tillman (COIN and Hirer 1968) ;  O ,  
Bell (Coles and Hint  1968);  e ,  Purtell et al. (1981)  
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In Figure 4 mean velocity profiles at various R0 between 
1,400 and 11,000 are compared to experimental data 
tabulated in Coles and Hirst (1968). Variables are in wall 
units (y. =yu./v and U+--U/u.) .  Although the lower 
Reynolds number profiles are somewhat compacted, expanded 
plots show that they agree with the experimental data as well 
as do the higher Reynolds number cases. Hence, the model is 
reproducing the Reynolds number dependence displayed by the 
data without any Reynolds number dependence of the model 
constants; the exact viscous terms in Equations 2, 4, and 6 seem 
to adequately represent Reynolds number effects. 

An even more detailed assessment of the model is 
provided by Figure 5. This shows a comparison of 
turbulence statistics to data transcribed from Klebanoff 
(1955); Re is 7,150. The computed kinetic energy shows a 
sharp peak near the wall, as do the data, although some 
quantitative discrepancy exists. In the outermost portion of 
the boundary layer, the experimental data fall off a bit more 
rapidly than the computation. The solution for the normal 
component of intensity is in quite good accord with the 
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Figure 4 Mean velocity profiles in zero pressure-gradient 
boundary layer at Ro = 1451 ( x ), 3195 ( + ), 5473 (¢,), and 10611 
(e) 
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Figure 5 Profiles of k ( e )  and ~ ( 0 )  at Re = 7,150 in a zero 
pressure-gradient boundary layer. Experimental data were tran- 
scribed from Klebenoff (1955) 
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Figure 6 Stanton number versus momentum thickness Reynolds 
number is zero pressure-gradient boundary layer. Data from 
Reynolds et al. (1958). - - ,  Prt = 0.9; - - - ,  Equation 9 

m 
data; this is important because the v2-component is 
responsible for turbulent transport toward the wall. 

Heat transfer coefficients in the form of Stanton number 
versus momentum thickness Reynolds number are por- 
trayed by Figure 6. They are compared to experimental data 
from Reynolds et al. (1958); Moffatt and Kays (1984) 
describe these data as representative of those measured in 
many subsequent experiments. The molecular Prandtl number 
is 0.71, corresponding to air. Two computations are 
shown in the figure: one was done with Pr,--0.9 and is 
shown by the solid curve; the other was done with PRt Oven 
by the formula 

1.7 
Prt = (9) 

"e 5/P=t 1 + 0.4Pet + 0.08( - l)Pe 2 

and is shown by the dashed curve. In Equation 9, Pet is the 
turbulent Peclet number vJr. Equation 9 is the Prandtl 
number-Peclet number relation Oven by Moffatt and Kays 
(1984), and 0.9 is the value they recommend if a constant 
Prandtl number is to be used instead. Equation 9 has the 
property of rising steeply near the wall, reaching 1.7 at y = 0, 
and tends to 0.85 far from the wall. A steep rise of Prt is 
seen experimentally when y+ < 15 (Moffatt and Kays 1984). 
Both of the curves in Figure 6 are within the data scatter: 
the constant Prandtl number curve (solid) would seem to 
be in slightly better agreement, although the two curves are 
within 10 percent of each other. 

Figure 7 shows a more stringent test of the near-wall 
behavior of the turbulent transport model. The upper curve 
and x 's  are a computation and data from Reynolds et al. (1958) 
of heat transfer in a boundary layer with a step in temperature 
at R0 = 2,280. Upstream the plate is unheated; hence, in the 
downstream, heated reoon the thermal boundary layer 
develops into a pre-existing flow boundary layer. Transport 
processes very near to the wall then determine the dynamic 
response of the Stanton number to this abrupt change in 
boundary condition. In the computation the wall temperature 
was raised from 0 to 1 in a single downstream step. This caused 
the Stanton number to become extremely large at the start of 
the heating; of course, in the experiment such a sharp step was 
impossible. Data and a computation for a uniformly heated 
plate (+) are included in Figure 7. One sees that the rate of 
relaxation toward the uniformly heated St vs. Re curve is 
predicted quite well by the model. The model lies a bit above 
the data, due to the d i ~  in initial conditions, but parallel 
to it, showing that the model has the right dynamical behavior. 
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Figure 7 Stanton number versus momentum thickness Reynolds 
number for Reynolds et al. (1958) experiment with step heating. 
( x ) Step in wall temperature at Re = 2,280; ( + ) uniformly heated 
wal~ 

By an Re of about 5,500, the experimental data for the step and 
uniform heating have mingled. The model predicts the two 
cases to approach asymptotically as Re-" 0% as might be 
expected. 

Mean temperature profiles for the case of a uniformly heated 
plate are compared to data of Reynolds et al. (1958) in Figure 
8 at two values of Re. A clear discrepancy exists between the 
model and data: although the model profiles have the right 
shape and the correct gradient near the wall, they fall above 
the data in the center of the boundary layer. Equation 9 was 
intended to improve the agreement between model and 
experimental temperature profiles. At the higher Reynolds 
number, it does produce an improvement. Ultimately, it would 
seem more in keeping with the spirit of Reynolds stress closure 
modeling to develop an eddy heat-flux equation rather than 
use an explicit Pr,-Pet relationship; for the time being 
Equation 9 seems an adequate stop gap. 

It is hoped that the physical and mathematical basis of the 
present model will make it more flexible than k-c models, with 
damping functions to correct their near-wall behavior. The next 
three figures are in this vein. 

Samuel and Joubert (1974) reported an experiment on a 
boundary layer developing into an increasingly adverse 
pressure gradient. Motivated by the Stanford boundary-layer 
conference (Coles and Hirst 1968), they set up a simple non- 
equilibrium flat-plate flow against which models can be tested. 
Rodi and Scheuerer (1986) found than a k-e model with 
eddy-viscosity damping considerably overpredicted the skin- 
friction data. Hence, this is a useful experiment for testing how 
a turbulence model fares in nonequllibrium flow. Rodi and 
Scheuerer added an extra production term to their s-equation, 
with an adjustable constant, solely to fit a computation to 
Samuel and Joubert's data. As Rodi and Scheuerer noted, the 
extra term has an inappropriately large coefficient and violates 
the principle of tensorial invariance. 

An initial condition for the present computation was 
obtained by starting with a zero pressure-gradient boundary 
layer slightly upstream of the first measurement location, then 
subjecting it to the initial pressure gradient reported by Samuel 
and Joubert (1974). The upstream distance at which the 
pressure gradient was imposed was determined as follows: at 

the first measurement location Re = 4,992, while Cf --- 2.79 x 
10-3; a zero pressure-gradient boundary layer at this Re would 
have Cf = 3.0 x 10-~. I t  was found that the correct init ial 
friction coefficient could be obtained by applying the pressure 
gradient to a zero pressure-gradient boundary layer with 
Ro = 3,200 and allowing it to develop downstream to the 
position where Ro = 4,992, so this is how the computation was 
initialized. The shape of the initial mean velocity profile is very 
close to the zero pressure-gradient form, as are the k and 
v -~ profiles; hence, our initialization procedure is analogous to 
starting with measured profiles, but preferable because it also 
provides initial conditions for ~ and )~22" 

The pressure gradient versus downstream distance tabulated 
in Table 1 of Samuel and Joubert (1974) was imposed on the 
present model. The resulting downstream evolution of friction 
coefficient and displacement thickness are shown in Figure 9. 
The agreement is rather good. No alterations to the model used 
in the previous zero pressure-gradient and channel flow 
computations were made. Thus, one sees that the extra 
production term added by Rodi and Scheuerer to the k-s model 
to bring it closer to the data is not required; also, this term is 
not consistent with the boundary-layer approximation, so 
ought not be added. 

The abscissa in Figure 9 is downstream distance in meters 
because this is how Samuel and Joubert (1974) report their 
data--note that we have set the origin of x at the first 
measurement station. For the computations, the reported value 
of unit Reynolds number d Re/dx = 1.7 x 106 m-  t was used 
to nondimensionalize both distance and the C o gradient 
reported in their Table 1. Samuel and Joubert also define Cf 
as the friction coefficient based on the upstream reference 
velocity; this is how the computations are normalized in 
Figure 9. 

The present model als_.o shows agreement with data on the 
evolution of the k an._d v 2 profiles. Figure 10 shows computed 
kinetic energy and r 2 profiles at three downstream locations. 
They are normalized by the upstream reference velocity. Figure 
10 makes it clear that this is a significantly nonequilibrium 
flow. It often seems that the near-wall portion of mean flow 
profiles can be collapsed to their zero pressure-gradient form 
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Figure 8 Temperature profiles at Re= 1763 ( x )  and 4432 (e) .  
Lines are as in Figure 6 
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Figure 9 Friction coefficient ( 0 )  and displacement thickness ( x ) 
versus downstream distance for the Samuel and Joubert adverse 
pressure-gradient boundary layer 

10. 

.1¢ 

4 ,  

2 

0 0:2 0:4 0'.6 0:e 1.0 y/S 

Figure 10 Turbulent intensities for the Samuel and Joubert 
experiment at x = 0.1 m ( - ) ,  1.87 m ( - - - ) ,  and 2.55 m ( - - - - - )  

by plotting in wall units; in particular, log-linear plots seem 
often to have a linear portion with the same slope and intercept 
as in zero pressure-gradient flow--even though the pressure 
gradient is far from zero. In light of Fignre 10 and similar results 
in Samuel and Joubert (1974), this collapse of the mean flow is 
rather puzzling. Turbulence statistics, including the Reynolds 
shear stress, show significant departures from equilibrium in 
flows for which the wall region is described as being in 
"equilibrium" on the basis of wall unit plots of the mean 
velocity profile. 

Figure 10 can be compared to Figure 16 of Samuel and 
Joubert (1974): the experiments also show the movement of the 
peak kinetic energy toward the wall, with it disappearing at the 
last measurement station, and the increasing suppression of v 2 
near the surface. The predicted magnitudes of kl/2/U, and 
~1/2/U, also are in rough accord with the data. The primary 
point of disagreement is the behavior in the outermost part of 
the boundary layer: here the data show k and v -~ to be largest 
at x = 2 . 5 5 m ,  while they are smallest in the model 
computation. This possibly is a result of outer region 
intermittency not being suitably represented by the model. The 
outer region only has a weak effect on the mean velocity and 
skin friction. 

In Figure 11, mean flow profiles are displayed at x = 1.87 m 
and 2.55m along with experimental measurements. The 
agreement at 1.87 m is rather good. At the station farthest 
downstream, U/U® has risen to about 0.3 at the top of the 
region of steep gradient (the viscous sublayer) next to the 
surface; in the experiments, this quantity rises to about 0.36. 

Consequently, the wake deficit is overpredicted by the model 
at this location. 

One might ask why the present model performs better than 
the k-~-damping-function model in adverse pressure-gradient 
flow. An explanation follows from Figures 5 and 10: the k-e 
model replaces the velocity scale v 2 in Equation 1 by k, thereby 
making the eddy viscosity isotropic. The "damping function" 
that then is needed to fit the model to data is a correction for 
the lack of anisotropy in the model and its presence in the 
flow--this explanation of the nature of the eddy-viscosity 
damping function was also given by Launder (1986). 
Comparing the k and v 2 profiles in Figure 5, one sees that in 
order to mirror the v 2 profile, the k profile must be multiplied 
by a function of y + that suppresses its near-surface peak. This 
damping function of y+ is fixed once and for all; hence, it is 
unable to respond to dramatic changes of the turbulence 
profiles, like those occurring downstream in Figure 10. It is 
clear that the damping function is peculiar to a given flow--and 
this probably is why a plethora of functions have been used by 
various modelers. In a strong pressure gradient, the sharp peak 
of k near the wall is suppressed as the maximum rate of energy 
production moves away from the surface; the fixed damping 
function is unable to reflect these changes. The present model 
is formulated in terms of turbulence statistics alone, and 
profiles of these statistics are found by solving differential 
equations; the objective in doing so is to allow them to respond 
to conditions of the flow. 

Previous investigators (Rodi and Scheuerer 1986) have 
proposed that the failure of the k-e-damping-function model 
in both equilibrium and nonequilibrium adverse pressure- 
gradient flow was due to shortcomings in the ~ equation, their 
reasoning being that the length scale of the turbulence was 
incorrectly determined by e. The practice of using e to 
determine a length scale has serious faults; however, the present 
results suggest that the difficulties experienced by the k-e model 
in adverse pressure gradients is primarily a consequence of 
using k for the velocity scale; the e equation seems to perform 
satisfactorily. 

As a last assessment of the model, plane Couette flow has 
been computed. Experiments on this flow are described by El 
Telbany and Reynolds (1982); a DNS was performed by Lee 
(1990). This case was included in the present paper on the 
advice of a reviewer. However, it should be noted that Lee 
found the turbulence to be dominated by large-scale, 
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Figure 11 Mean velocity profiles at x =  1.87 m ( 0 )  and 2 .55m 
( x ) of the Samuel and Joubert experiment 
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Profiles of ~++(O) and v'+(x) at R e = 104 in plane 
Couette flow. Experimental data were transcribed from El Telbany 
and Reynolds (1982)  

quasi-steady, streamwise eddies; these eddies do not form in 
similar Poiseulle flow and boundary-layer simulations. He 
advised that this was not a representative case against which 
to test models (private communication). Gibson (1988) also 
noted certain peculiarities of plane Couette flow that make it 
unlike other plane shear layers. He hypothesized that counter- 
gradient transport of turbulent energy might occur near the 
center of the channel. 

Figure 12 shows a comparison of model solutions and data 
of E1 Telbany and Reynolds (1982) on v'/u, and ~ k / u , .  These 
are at a Reynolds number U,, ,h /v  = 104, where h is the 
half-height of the channel. The general_features are that k has 
a peak near the wall and both k and v 2 are constant in the 
central portion of the channel. The model and data agree on 
this, although the model overpredicts the levels of the turbulent 
intensities. Similarly, the model overpredicts the skin-friction 
coefficient measured by El Telbany and Reynolds by about 16 
percent; thus it is at the upper end of the data scatter in Figure 
5 of E1 Telbany and Reynolds (1982). Our results agree with 
Gibson's (1988) conclusion that models that work well in other 
wall-bounded shear flows tend to be more inaccurate in plane 
Couette flow. 

C o n c l u s i o n s  

The focus of the present paper was the refinement and 
assessment of an approach to near-wall closure modeling 
suggested in Durbin (1991). In_that approach, equations come 
in coupled pa i r s - -k - t  and vz-/tz2; this enables boundary 
conditions to be satisfied and an elliptic wall blocking effect to 
be introduced. ~ is the appropriate velocity scale for the eddy 
viscosity near a solid boundary. In the cases discussed here, kit  
seems to be an appropriate time scale. In more rapidly evolving 
flows, one would expect this time scale to be inappropriate; the 
eddy-viscosity approximation for the Reynolds shear stress 
would also be unjustified. 

A model for wall-bounded thin shear layers was presented 
and assessed by comparing numerical solutions for mean flow, 
turbulence statistics, and heat transfer to experimental and 
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DNS data. The model is currently being used to compute a 
pressure-driven separation bubble; it is not limited in its 
applicability to attached flow. However, its simple form would 
be inappropriate to complex geometries in which the v 2 
component cannot be singled out. If the flow contained massive 
separation, a model calibrated using waR-bounded shear flow 
data could be expected to be inaccurate. 
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